class StackingClassifier extends Predictor[Vector, StackingClassifier, StackingClassificationModel] with StackingClassifierParams with MLWritable
- Source
- StackingClassifier.scala
Linear Supertypes
Ordering
- Grouped
- Alphabetic
- By Inheritance
Inherited
- StackingClassifier
- MLWritable
- StackingClassifierParams
- ClassifierParams
- HasRawPredictionCol
- StackingParams
- HasBaseLearners
- HasStacker
- HasBaseLearner
- HasWeightCol
- HasParallelism
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val baseLearner: Param[EnsemblePredictorType]
param for the estimator that will be used by the ensemble learner as a base learner
param for the estimator that will be used by the ensemble learner as a base learner
- Definition Classes
- HasBaseLearner
- val baseLearners: Param[Array[EnsemblePredictorType]]
param for the estimators that will be used by the ensemble learner as base learners
param for the estimators that will be used by the ensemble learner as base learners
- Definition Classes
- HasBaseLearners
- final def clear(param: Param[_]): StackingClassifier.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def copy(extra: ParamMap): StackingClassifier
- Definition Classes
- StackingClassifier → Predictor → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]
- Attributes
- protected
- Definition Classes
- ClassifierParams
- def extractInstances(dataset: Dataset[_], validateInstance: (Instance) => Unit): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
- def extractInstances(dataset: Dataset[_]): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
- def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
- Attributes
- protected
- Definition Classes
- Predictor
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- final val featuresCol: Param[String]
- Definition Classes
- HasFeaturesCol
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def fit(dataset: Dataset[_]): StackingClassificationModel
- Definition Classes
- Predictor → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[StackingClassificationModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): StackingClassificationModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): StackingClassificationModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0") @varargs()
- def fitBaseLearner(baseLearner: EnsemblePredictorType, labelColName: String, featuresColName: String, predictionColName: String, weightColName: Option[String])(df: DataFrame): EnsemblePredictionModelType
- Attributes
- protected
- Definition Classes
- HasBaseLearner
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBaseLearner: EnsemblePredictorType
- Definition Classes
- HasBaseLearner
- def getBaseLearners: Array[EnsemblePredictorType]
- Definition Classes
- HasBaseLearners
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
- final def getLabelCol: String
- Definition Classes
- HasLabelCol
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- def getParallelism: Int
- Definition Classes
- HasParallelism
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- final def getPredictionCol: String
- Definition Classes
- HasPredictionCol
- final def getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
- def getStackMethod: String
- Definition Classes
- StackingClassifierParams
- def getStacker: EnsemblePredictorType
- Definition Classes
- HasStacker
- final def getWeightCol: String
- Definition Classes
- HasWeightCol
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- final val labelCol: Param[String]
- Definition Classes
- HasLabelCol
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val parallelism: IntParam
- Definition Classes
- HasParallelism
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- final val predictionCol: Param[String]
- Definition Classes
- HasPredictionCol
- final val rawPredictionCol: Param[String]
- Definition Classes
- HasRawPredictionCol
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- final def set(paramPair: ParamPair[_]): StackingClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): StackingClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): StackingClassifier.this.type
- Definition Classes
- Params
- def setBaseLearners(value: Array[EnsemblePredictorType]): StackingClassifier.this.type
- final def setDefault(paramPairs: ParamPair[_]*): StackingClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): StackingClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
- def setFeaturesCol(value: String): StackingClassifier
- Definition Classes
- Predictor
- def setLabelCol(value: String): StackingClassifier
- Definition Classes
- Predictor
- def setParallelism(value: Int): StackingClassifier.this.type
- def setPredictionCol(value: String): StackingClassifier
- Definition Classes
- Predictor
- def setStackMethod(value: String): StackingClassifier.this.type
- def setStacker(value: EnsemblePredictorType): StackingClassifier.this.type
- val stackMethod: Param[String]
Discrete (SAMME) or Real (SAMME.R) boosting algorithm.
Discrete (SAMME) or Real (SAMME.R) boosting algorithm. (case-insensitive) Supported: "class", "raw", "proba". (default = class)
- Definition Classes
- StackingClassifierParams
- val stacker: Param[EnsemblePredictorType]
param for the estimator that will be used by the ensemble learner to aggregate results of base learner(s)
param for the estimator that will be used by the ensemble learner to aggregate results of base learner(s)
- Definition Classes
- HasStacker
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_]): StackingClassificationModel
- Attributes
- protected
- Definition Classes
- StackingClassifier → Predictor
- def transformSchema(schema: StructType): StructType
- Definition Classes
- Predictor → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- StackingClassifier → Identifiable
- def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- Attributes
- protected
- Definition Classes
- ClassifierParams → PredictorParams
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final val weightCol: Param[String]
- Definition Classes
- HasWeightCol
- def write: MLWriter
- Definition Classes
- StackingClassifier → MLWritable